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Remarks:

� The exam consists of 6 tasks.

� You have 180 minutes to complete the exam.

� You can only use the provided short version of our lecture notes.

� The solution must be documented well with calculations and if necessary

references to theorems of our lecture. Giving just the solution is not

sufficient.

� Whenever you need a certain quantile or probability try to express it

using quantiles respectively the distribution function of standard distri-

butions, like standard normal, t or F distribution.

Task 1 2 3 4 5 6
∑

Points possible 10 14 6 5 5 9 49

Points achieved

Grade exam: Grade homework: Final grade:



Task 1 (3 + 3 + 4) Let X1, . . . , Xn be independent and identically distributed

with density fλ, λ > 0 given by

fλ(x) =
1

λ
e−

1
λ
xI{x≥0}.

a) Compute a moment estimator for λ.

Solution:

E(X1) =

∫ ∞
0

x
1

λ
e−

1
λ
xdx

= x
1

− 1
λ

1

λ
e−

1
λ
x|∞x=0 +

∫ ∞
0

1

− 1
λ

1

λ
e−

1
λ
xdx 1

= 0 + λ

∫ ∞
0

1

λ
e−

1
λ
x︸ ︷︷ ︸

=1

dx = λ 1

So we can choose λ̂ = X 1

b) Compute the Cramer-Rao bound (see Theorem 7.2). You can assume in

the following that {
∏n

i=1 fλ(xi), λ > 0} is regular for n ∈ N.

Solution:

By Lemma 6.3 we have

iλ = −E(l̈λ(X1))

where

l̈λ(x) =
∂2 log( 1

λ
e−

1
λ
x)

∂2λ
=
∂2(− log(λ)− 1

λ
x)

∂2λ

=
∂(− 1

λ
+ 1

λ2
x)

∂λ

= +
1

λ2
− 2

λ3
x 1

and thus

iλ = −E(
1

λ2
− 2

λ3
X1) =

2

λ3
λ− 1

λ2
=

1

λ2
x 1

By Theorem 7.2 Var(λ̂) ≥ 1
n 1
λ2

= λ2

n
1

They do not need to use Lemma 6.3 and can calculate Var(l̇(X1)) instead

(using the hint in c))

c) Show that X is uniformly minimum variance unbiased (UMVU) estima-

tor for λ. You can (but do not need to) use that E(X2
1 ) = 2λ2.



Solution:

We can use Theorem 7.2 (but of course also 7.14+7.15) and have

Var(X) =
1

n2
Var(

n∑
i=1

Xi) =
1

n2
nVar(X1) 1

=
1

n

(
E(X2

1 )− [E(X1)]
2
)

=
1

n
(2λ2 − λ2) =

λ2

n
1

which equals the Cramer-Rao bound. 1

Since the estimator is unbiased (E(X) = E(X1) = λ) 1

it is thus UMVU estimator.
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Task 2 (7 + 5 + 2) Let X1, . . . , Xn be independent and identically distributed

with probability mass function (discrete density)

fθ(x) =


1
2
(1− θ)

θ

0

for

|x| = 1

x = 0

x /∈ {−1, 0, 1}

for θ ∈ (0, 1).

a) Compute the maximum likelihood estimator of θ.

Solution:

Since we have independence:

LX1,...,Xn(θ) =
n∏
i=1

f(Xi)

=
n∏
i=1

(
1

2
(1− θ))|Xi| · θ1−|Xi|

= (
1

2
(1− θ))

∑n
i=1 |Xi|θ

∑n
i=1(1−|Xi|) 1

and therefore

log(LX1,...,Xn(θ)) =
n∑
i=1

|Xi| log(
1

2
[1− θ]) + (n−

n∑
i=1

|Xi|) log(θ)

=
n∑
i=1

|Xi|(log(
1

2
) + log(1− θ)) + (n−

n∑
i=1

|Xi|) log(θ). 1

Deriving with respect to θ yields:

∂ log(LX1,...,Xn(θ))

∂θ
= −

∑n
i=1 |Xi|
1− θ

+
n−

∑n
i=1 |Xi|
θ

!
= 0

⇔ −θ
∑n

i=1 |Xi|+ (1− θ)(n−
∑n

i=1 |Xi|)
θ(1− θ)

!
= 0 1

So we have

n−
n∑
i=1

|Xi| − θn = 0⇔ θ = 1− 1

n

n∑
i=1

|Xi|. 1

The second derivative yields

∂ log(LX1,...,Xn(θ))

∂θ
= −

∑n
i=1 |Xi|

(1− θ)2
− n−

∑n
i=1 |Xi|
θ2

1

< 0 1

(inequality since at least one of
∑n

i=1 |Xi| and n −
∑n

i=1 |Xi| has to be

positive (note that 0 ≤ |Xi| ≤ 1). So we have indeed found a maximum

and the ML estimator equals 1− |X|. 1
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b) We choose the Beta distribution with parameters α, β > 0:

pθ(θ) =
θα−1(1− θ)β−1

γ(α)γ(β)
γ(α + β)Iθ∈(0,1)

as prior distribution. Compute the related Bayes estimator of θ.

Hint: We have E(X) = α
α+β

for a Beta distributed random variable X

with parameters α, β > 0 (see 3.22).

Solution:

We have

pθ|X=x(θ) =
pX|θ=θ(x)pθ(θ)

pX(x)
1

=

(
1
2

)∑n
i=1 |xi|(1− θ)

∑n
i=1 |xi|θ

∑n
i=1(1−|xi|) θ

α−1(1−θ)β−1

γ(α)γ(β)
γ(α + β)Iθ∈(0,1)

pX1,...,Xn(x1, . . . , xn)

= C(x1, . . . , xn)(1− θ)
∑n
i=1 |xi|+β−1θn−

∑n
i=1 |xi|+α−1 1

thus θ|X = x is Beta distributed with parameters α̃ = n−
∑n

i=1 |xi|+α

and β̃ =
∑n

i=1 |xi|+ β 1

so that by 3.22 (or hint):

E(θ|X = x) =
n−

∑n
i=1 |xi|+ α

n−
∑n

i=1 |xi|+ α +
∑n

i=1 |xi|+ β
=
n−

∑n
i=1 |xi|+ α

n+ α + β
1

and θ̂Bayes =
n−

∑n
i=1 |xi|+α

n+α+β
. 1

c) How should one choose α and β to add as few prior information as pos-

sible?

Solution:

If we compare the ML estimator with the Bayes estimator we see that

α and β are pseudo-observations (α corresponds to |Xi| = 0 and β to

|Xi| = 1. 1

Thus choosing α and β as small as possible adds as few information as

possible . 1

or

One can also argue that by choosing α = β = 1 we have the uniform

distribution on (0,1) as prior distribution. 1

Thus the prior distribution treats every value of θ equally and thus does

not seem to contain information about θ. 1
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Task 3 (1 + 2 + 3) Let X1, . . . , Xn be independent and identically distributed

with density fθ = 1√
2πθ
e−

1
2

(x−µ)2
θ where µ ∈ R and θ > 0. We assume that µ is

known.

a) Show that
∑n

i=1
(Xi−µ)2

θ
is a pivot.

Solution:

Since (Xi − µ)/
√
θ0 ∼ N(0, 1) is standard normal

∑n
i=1

(Xi−µ)2
θ0

∼ χ2
n.

Thus it does not depend on θ (or µ) 1

b) Show that {gθ(x1, . . . , xn), θ > 0} where gθ denotes the joint density of

X1, . . . , Xn has a monotone likelihood ratio.

Solution:

We apply Lemma 7.32 and show that we have an exponential family (of

course you can also show the original definition). Because of indepen-

dence we have

gθ(x1, . . . , xn) =
n∏
i=1

1√
2πθ

e−
1
2

(xi−µ)
2

θ

= (2π)−
n
2 θ−

n
2︸ ︷︷ ︸

c(θ)

exp(− 1

2θ︸︷︷︸
Q(θ)

n∑
i=1

(xi − µ)2︸ ︷︷ ︸
V (x1,...,xn)

). 1

Since Q′(θ) = 1
θ2
> 0 Q(θ) is strictly monotone increasing 1

{gθ(x1, . . . , xn), θ > 0} has a monotone likelihood ratio.

c) Construct the uniformly most powerful level α test for H0 : θ ≤ θ0 vs.

H1 : θ > θ0.

Solution:

Because of b) we have a monotone likelihood ratio in V (X1, . . . , Xn) =∑n
i=1(Xi−µ)2 thus using Karlin-Rubin Theorem (7.29) there exist cα, γα

such that

ψ(X1, . . . , Xn) =


1

γα

0

if
∑n

i=1(Xi − µ)2

>

=

<

cα 1

such that ψ(X1, . . . , Xn) is optimal for H0 : θ ≤ θ0 vs H1 : θ > θ0. It

remains to compute cα and γα. Since the distribution of Xi and thus∑n
i=1(Xi − µ)2 is continuous P (V (X1, . . . , Xn) = cα) = 0 and we can

choose γα arbitrary (and thus 0). 1

For cα we have:
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Pθ0(
n∑
i=1

(Xi − µ2) > cα) = α⇔ P (
n∑
i=1

(Xi − µ)2

θ0
>
cα
θ0

) = α.

Because of a) cα
θ0

= F−1χ2
n

(0.95) so that cα = F−1χ2
n

(0.95)θ0 where F−1χ2
n

(0.95)

is the 0.95 quantile of the χ2 distribution with n degrees of freedom. 1
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Task 4 Let X1, . . . , Xn and Y1, . . . , Yn be two samples. Show the following

identity for the sample correlation coefficient

rXY =
S2
X+Y − S2

X−Y

4SXSY

where S2
X+Y and S2

X−Y denote the sample variances based on X1+Y1, . . . , Xn+

Yn respectively X1 − Y1, . . . , Xn − Yn.
Solution:

We have

S2
X+Y =

1

n− 1

n∑
i=1

(Xi + Yi −
1

n

n∑
i=1

(Xi + Yi))
2

=
1

n− 1

n−1∑
i=1

([Xi −X] + [Yi − Y ])2 1

=
1

n− 1

n∑
i=1

([Xi −X]2 + 2[Xi −X][Yi − Y ] + [Yi − Y ]2)

= S2
X + S2

Y + 2SXY 1

and analogously

S2
X+Y =

1

n− 1

n∑
i=1

(Xi − Yi −
1

n

n∑
i=1

(Xi − Yi))2

=
1

n− 1

n−1∑
i=1

([Xi −X]− [Yi − Y ])2 1

=
1

n− 1

n∑
i=1

([Xi −X]2 − 2[Xi −X][Yi − Y ] + [Yi − Y ]2)

= S2
X + S2

Y − 2SXY 1

so that

S2
X+Y − S2

X−Y

4SXSY
=
S2
X + S2

Y + 2SXY − (S2
X + S2

Y − 2SXY )

4SXSY
=

4SX,Y
4SXSY

= rXY 1
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Task 5 (3 + 2) The following R-function computes a test based on two data-

vectors x and y of equal length.

f <- function(x,y,alpha) {

A <- length(x)

B <- cor(x,y)*sd(y)/sd(x)

C <- mean(y)-B*mean(x)

D <- y-x*B-C

E <- sum(D^2)/(A-2)

F <- matrix(c(rep(1,A),x),ncol=2)

F <- t(F)%*%F

G <- solve(F)[2,2]

H <- B/sqrt(G*E)

I <- qt(1-alpha,A-2)

J <- as.numeric(H>I)

return(J)

}

a) Which values are defined by B, C and I? Solution:

– B: estimated slope of simple linear regression β̂ 1

– C: estimated intercept of simple linear regression α̂ 1

– I: 1−α quantile of a t-distribution with A-2 degrees of freedom 1

b) Which null-hypothesis is tested by the R-function?

� Which null-hypothesis is tested by the R-function?

Solution:

We test whether the slope of a simple linear regression 1

is:

H0 : β ≤ 0 vs. H1 : β > 0. 1
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Task 6 (2 + 4 + 3) Consider the model

Yi = β0 + xi1β1 + . . .+ xikβk + εi for i = 1, . . . , n,

where ε1, . . . , εn are iid with ε1 ∼ N(0, σ2) for some σ > 0 and det(X ′X) 6= 0

where

X =

1 x11 . . . x1k
...

...
...

1 xn1 . . . xnk

 .

We want to predict the value of the dependent random variable Y for a com-

bination of independent explanatory variables z := (1, x1, . . . , xk). A possi-

ble predictor is Ŷ := zβ̂ where β̂ is the maximum likelihood estimator of

β = (β0, . . . , βk)
′.

a) Derive the distribution of Ŷ . Solution:

By Theorem 8.17 we have β̂ ∼ N(β, σ2(X ′X)−1) 1

and by Theorem 8.7 with A = z and b = 0 1

zβ̂ ∼ N(zβ, σ2z(X ′X)−1z′)

b) Show that

Ŷ − zβ√
z(X ′X)−1z′σ̂2 n

n−k−1

∼ tn−k−1

where σ̂2 = 1
n

∑n
i=1(Yi − (1, xi1, . . . , xik)β̂)2.

Solution:

By Theorem 8.20 we know that β̂ and σ̂2 are independent. 1

By a) we know that zβ̂−zβ√
σ2z(X′X)−1z′

∼ N(0, 1) 1

and by Theorem 8.19 σ̂2

σ2
n

n−k−1 ∼ χ2
n−k−1. 1

It follows that

Ŷ − zβ√
z(X ′X)z′σ̂2 n

n−k−1

=

Ŷ−zβ√
z(X′X)−1z′σ2√
σ̂2 n

n−k−1

σ2

1

is t distributed with n− k − 1 degrees of freedom.

c) Derive a one-sided (1− α) confidence interval of the form (d,∞) for zβ.

Try to find a small interval (you will get no points for the trivial interval

(−∞,∞)).

Solution:

We have

11



1− α = P (
Ŷ − zβ√

z(X ′X)−1z′σ̂2 n
n−k−1

≤ F−1tn−k−1
(1− α)) 1

= P (Ŷ − zβ ≤ F−1tn−k−1
(1− α)

√
z(X ′X)−1z′σ̂2

n

n− k − 1
)

= P (Ŷ − F−1tn−k−1
(1− α)

√
z(X ′X)−1z′σ̂2

n

n− k − 1
≤ zβ) 1

and thus(
Ŷ − F−1tn−k−1

(1− α)

√
z(X ′X)−1z′σ̂2

n

n− k − 1
,∞
)

1

is a 1− α confidence interval for zβ.
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