Universiteit Leiden
Mathematisch Instituut
Dr. A. Dürre

Exam
Introduction Mathematical Statistics
Semster I 2022-2023

Family name:

Student number:

Remarks:

- The exam consists of 6 tasks.
- You have $\mathbf{1 8 0}$ minutes to complete the exam.
- You can only use the provided short version of our lecture notes.
- The solution must be documented well with calculations and if necessary references to theorems of our lecture. Giving just the solution is not sufficient.
- Whenever you need a certain quantile or probability try to express it using quantiles respectively the distribution function of standard distributions, like standard normal, t or F distribution.

Task	1	2	3	4	5	6	\sum
Points possible	10	14	6	5	5	9	49
Points achieved							

Task $1(3+3+4)$ Let X_{1}, \ldots, X_{n} be independent and identically distributed with density $f_{\lambda}, \lambda>0$ given by

$$
f_{\lambda}(x)=\frac{1}{\lambda} e^{-\frac{1}{\lambda} x} I_{\{x \geq 0\}} .
$$

a) Compute a moment estimator for λ.

Solution:

$$
\begin{align*}
\mathbb{E}\left(X_{1}\right) & =\int_{0}^{\infty} x \frac{1}{\lambda} e^{-\frac{1}{\lambda} x} d x \\
& =\left.x \frac{1}{-\frac{1}{\lambda}} \frac{1}{\lambda} e^{-\frac{1}{\lambda} x}\right|_{x=0} ^{\infty}+\int_{0}^{\infty} \frac{1}{-\frac{1}{\lambda}} \frac{1}{\lambda} e^{-\frac{1}{\lambda} x} d x \tag{1}\\
& =0+\lambda \underbrace{\int_{0}^{\infty} \frac{1}{\lambda} e^{-\frac{1}{\lambda} x}}_{=1} d x=\lambda \tag{1}
\end{align*}
$$

So we can choose $\hat{\lambda}=\bar{X}$
b) Compute the Cramer-Rao bound (see Theorem 7.2). You can assume in the following that $\left\{\prod_{i=1}^{n} f_{\lambda}\left(x_{i}\right), \lambda>0\right\}$ is regular for $n \in \mathbb{N}$.

Solution:

By Lemma 6.3 we have

$$
i_{\lambda}=-\mathbb{E}\left(\ddot{l}_{\lambda}\left(X_{1}\right)\right)
$$

where

$$
\begin{align*}
\ddot{l}_{\lambda}(x)=\frac{\partial^{2} \log \left(\frac{1}{\lambda} e^{-\frac{1}{\lambda} x}\right)}{\partial^{2} \lambda} & =\frac{\partial^{2}\left(-\log (\lambda)-\frac{1}{\lambda} x\right)}{\partial^{2} \lambda} \\
& =\frac{\partial\left(-\frac{1}{\lambda}+\frac{1}{\lambda^{2}} x\right)}{\partial \lambda} \\
& =+\frac{1}{\lambda^{2}}-\frac{2}{\lambda^{3}} x \tag{1}
\end{align*}
$$

and thus

$$
\begin{equation*}
i_{\lambda}=-\mathbb{E}\left(\frac{1}{\lambda^{2}}-\frac{2}{\lambda^{3}} X_{1}\right)=\frac{2}{\lambda^{3}} \lambda-\frac{1}{\lambda^{2}}=\frac{1}{\lambda^{2}} x \tag{1}
\end{equation*}
$$

By Theorem 7.2 $\operatorname{Var}(\hat{\lambda}) \geq \frac{1}{n \frac{1}{\lambda^{2}}}=\frac{\lambda^{2}}{n}$
They do not need to use Lemma 6.3 and can calculate $\operatorname{Var}\left(\dot{i}\left(X_{1}\right)\right)$ instead (using the hint in c))
c) Show that \bar{X} is uniformly minimum variance unbiased (UMVU) estimator for λ. You can (but do not need to) use that $\mathbb{E}\left(X_{1}^{2}\right)=2 \lambda^{2}$.

Solution:

We can use Theorem 7.2 (but of course also 7.14+7.15) and have

$$
\begin{align*}
\operatorname{Var}(\bar{X}) & =\frac{1}{n^{2}} \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} n \operatorname{Var}\left(X_{1}\right) \tag{1}\\
& =\frac{1}{n}\left(\mathbb{E}\left(X_{1}^{2}\right)-\left[\mathbb{E}\left(X_{1}\right)\right]^{2}\right)=\frac{1}{n}\left(2 \lambda^{2}-\lambda^{2}\right)=\frac{\lambda^{2}}{n} \tag{1}
\end{align*}
$$

which equals the Cramer-Rao bound.
Since the estimator is unbiased $\left(\mathbb{E}(\bar{X})=\mathbb{E}\left(X_{1}\right)=\lambda\right)$
it is thus UMVU estimator.

Task $2(7+5+2)$ Let X_{1}, \ldots, X_{n} be independent and identically distributed with probability mass function (discrete density)

$$
f_{\theta}(x)=\left\{\begin{array}{ccc}
\frac{1}{2}(1-\theta) & |x|=1 \\
\theta & \text { for } & x=0 \\
0 & x \notin\{-1,0,1\}
\end{array} \quad \text { for } \theta \in(0,1) .\right.
$$

a) Compute the maximum likelihood estimator of θ.

Solution:

Since we have independence:

$$
\begin{align*}
L_{X_{1}, \ldots, X_{n}}(\theta) & =\prod_{i=1}^{n} f\left(X_{i}\right) \\
& =\prod_{i=1}^{n}\left(\frac{1}{2}(1-\theta)\right)^{\left|X_{i}\right|} \cdot \theta^{1-\left|X_{i}\right|} \\
& =\left(\frac{1}{2}(1-\theta)\right)^{\sum_{i=1}^{n}\left|X_{i}\right|} \theta^{\sum_{i=1}^{n}\left(1-\left|X_{i}\right|\right)} \tag{1}
\end{align*}
$$

and therefore

$$
\begin{align*}
\log \left(L_{X_{1}, \ldots, X_{n}}(\theta)\right) & =\sum_{i=1}^{n}\left|X_{i}\right| \log \left(\frac{1}{2}[1-\theta]\right)+\left(n-\sum_{i=1}^{n}\left|X_{i}\right|\right) \log (\theta) \\
& =\sum_{i=1}^{n}\left|X_{i}\right|\left(\log \left(\frac{1}{2}\right)+\log (1-\theta)\right)+\left(n-\sum_{i=1}^{n}\left|X_{i}\right|\right) \log (\theta) \tag{1}
\end{align*}
$$

Deriving with respect to θ yields:

$$
\begin{align*}
\frac{\partial \log \left(L_{X_{1}, \ldots, X_{n}}(\theta)\right)}{\partial \theta} & =-\frac{\sum_{i=1}^{n}\left|X_{i}\right|}{1-\theta}+\frac{n-\sum_{i=1}^{n}\left|X_{i}\right|}{\theta} \stackrel{!}{=} 0 \\
& \Leftrightarrow \frac{-\theta \sum_{i=1}^{n}\left|X_{i}\right|+(1-\theta)\left(n-\sum_{i=1}^{n}\left|X_{i}\right|\right)}{\theta(1-\theta)} \stackrel{!}{=} 0 \tag{1}
\end{align*}
$$

So we have

$$
\begin{equation*}
n-\sum_{i=1}^{n}\left|X_{i}\right|-\theta n=0 \Leftrightarrow \theta=1-\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}\right| . \tag{1}
\end{equation*}
$$

The second derivative yields

$$
\begin{align*}
\frac{\partial \log \left(L_{X_{1}, \ldots, X_{n}}(\theta)\right)}{\partial \theta} & =-\frac{\sum_{i=1}^{n}\left|X_{i}\right|}{(1-\theta)^{2}}-\frac{n-\sum_{i=1}^{n}\left|X_{i}\right|}{\theta^{2}} \tag{1}\\
& <0 \tag{1}
\end{align*}
$$

(inequality since at least one of $\sum_{i=1}^{n}\left|X_{i}\right|$ and $n-\sum_{i=1}^{n}\left|X_{i}\right|$ has to be positive (note that $0 \leq\left|X_{i}\right| \leq 1$). So we have indeed found a maximum and the ML estimator equals $1-\overline{|X|}$.
b) We choose the Beta distribution with parameters $\alpha, \beta>0$:

$$
p_{\bar{\theta}}(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\gamma(\alpha) \gamma(\beta)} \gamma(\alpha+\beta) I_{\theta \in(0,1)}
$$

as prior distribution. Compute the related Bayes estimator of θ.
Hint: We have $\mathbb{E}(X)=\frac{\alpha}{\alpha+\beta}$ for a Beta distributed random variable X with parameters $\alpha, \beta>0$ (see 3.22).

Solution:

We have

$$
\begin{align*}
p_{\bar{\theta} \mid X=x}(\theta) & =\frac{p_{X \mid \bar{\theta}=\theta}(x) p_{\bar{\theta}}(\theta)}{p_{X}(x)} \tag{1}\\
& =\frac{\left(\frac{1}{2}\right)^{\sum_{i=1}^{n}\left|x_{i}\right|}(1-\theta)^{\sum_{i=1}^{n}\left|x_{i}\right|} \theta \sum_{i=1}^{n}\left(1-\left|x_{i}\right|\right) \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\gamma(\alpha) \gamma(\beta)} \gamma(\alpha+\beta) I_{\theta \in(0,1)}}{p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)} \\
& =C\left(x_{1}, \ldots, x_{n}\right)(1-\theta)^{\sum_{i=1}^{n}\left|x_{i}\right|+\beta-1} \theta^{n-\sum_{i=1}^{n}\left|x_{i}\right|+\alpha-1} \tag{1}
\end{align*}
$$

thus $\bar{\theta} \mid X=x$ is Beta distributed with parameters $\tilde{\alpha}=n-\sum_{i=1}^{n}\left|x_{i}\right|+\alpha$
and $\tilde{\beta}=\sum_{i=1}^{n}\left|x_{i}\right|+\beta$
so that by 3.22 (or hint):
$\mathbb{E}(\bar{\theta} \mid X=x)=\frac{n-\sum_{i=1}^{n}\left|x_{i}\right|+\alpha}{n-\sum_{i=1}^{n}\left|x_{i}\right|+\alpha+\sum_{i=1}^{n}\left|x_{i}\right|+\beta}=\frac{n-\sum_{i=1}^{n}\left|x_{i}\right|+\alpha}{n+\alpha+\beta}$
and $\hat{\theta}_{\text {Bayes }}=\frac{n-\sum_{i=1}^{n}\left|x_{i}\right|+\alpha}{n+\alpha+\beta}$.
c) How should one choose α and β to add as few prior information as possible?

Solution:

If we compare the ML estimator with the Bayes estimator we see that α and β are pseudo-observations (α corresponds to $\left|X_{i}\right|=0$ and β to $\left|X_{i}\right|=1$.
Thus choosing α and β as small as possible adds as few information as possible.

One can also argue that by choosing $\alpha=\beta=1$ we have the uniform distribution on $(0,1)$ as prior distribution.
Thus the prior distribution treats every value of θ equally and thus does not seem to contain information about θ.

Task $3(1+2+3)$ Let X_{1}, \ldots, X_{n} be independent and identically distributed with density $f_{\theta}=\frac{1}{\sqrt{2 \pi \theta}} e^{-\frac{1(x-\mu)^{2}}{\theta}}$ where $\mu \in \mathbb{R}$ and $\theta>0$. We assume that μ is known.
a) Show that $\sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{\theta}$ is a pivot.

Solution:

Since $\left(X_{i}-\mu\right) / \sqrt{\theta_{0}} \sim N(0,1)$ is standard normal $\sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{\theta_{0}} \sim \chi_{n}^{2}$.
Thus it does not depend on θ (or μ)
b) Show that $\left\{g_{\theta}\left(x_{1}, \ldots, x_{n}\right), \theta>0\right\}$ where g_{θ} denotes the joint density of X_{1}, \ldots, X_{n} has a monotone likelihood ratio.

Solution:

We apply Lemma 7.32 and show that we have an exponential family (of course you can also show the original definition). Because of independence we have

$$
\begin{align*}
g_{\theta}\left(x_{1}, \ldots, x_{n}\right) & =\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \theta}} e^{-\frac{1}{2} \frac{\left(x_{i}-\mu\right)^{2}}{\theta}} \\
& =\underbrace{(2 \pi)^{-\frac{n}{2}} \theta^{-\frac{n}{2}}}_{c(\theta)} \exp (\underbrace{-\frac{1}{2 \theta}}_{Q(\theta)} \underbrace{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}_{V\left(x_{1}, \ldots, x_{n}\right)}) . \tag{1}
\end{align*}
$$

Since $Q^{\prime}(\theta)=\frac{1}{\theta^{2}}>0 Q(\theta)$ is strictly monotone increasing $\left\{g_{\theta}\left(x_{1}, \ldots, x_{n}\right), \theta>0\right\}$ has a monotone likelihood ratio.
c) Construct the uniformly most powerful level α test for $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$.

Solution:

Because of b) we have a monotone likelihood ratio in $V\left(X_{1}, \ldots, X_{n}\right)=$ $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ thus using Karlin-Rubin Theorem (7.29) there exist $c_{\alpha}, \gamma_{\alpha}$ such that

$$
\psi\left(X_{1}, \ldots, X_{n}\right)=\left\{\begin{array}{cc}
1 & > \tag{1}\\
\gamma_{\alpha} \text { if } \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=c_{\alpha} \\
0 & <
\end{array}\right.
$$

such that $\psi\left(X_{1}, \ldots, X_{n}\right)$ is optimal for $H_{0}: \theta \leq \theta_{0}$ vs $H_{1}: \theta>\theta_{0}$. It remains to compute c_{α} and γ_{α}. Since the distribution of X_{i} and thus $\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}$ is continuous $P\left(V\left(X_{1}, \ldots, X_{n}\right)=c_{\alpha}\right)=0$ and we can choose γ_{α} arbitrary (and thus 0).
For c_{α} we have:

$$
P_{\theta_{0}}\left(\sum_{i=1}^{n}\left(X_{i}-\mu^{2}\right)>c_{\alpha}\right)=\alpha \Leftrightarrow P\left(\sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{\theta_{0}}>\frac{c_{\alpha}}{\theta_{0}}\right)=\alpha .
$$

Because of a) $\frac{c_{\alpha}}{\theta_{0}}=F_{\chi_{n}^{2}}^{-1}(0.95)$ so that $c_{\alpha}=F_{\chi_{n}^{2}}^{-1}(0.95) \theta_{0}$ where $F_{\chi_{n}^{2}}^{-1}(0.95)$ is the 0.95 quantile of the χ^{2} distribution with n degrees of freedom.(1)

Task 4 Let X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} be two samples. Show the following identity for the sample correlation coefficient

$$
r_{X Y}=\frac{S_{X+Y}^{2}-S_{X-Y}^{2}}{4 S_{X} S_{Y}}
$$

where S_{X+Y}^{2} and S_{X-Y}^{2} denote the sample variances based on $X_{1}+Y_{1}, \ldots, X_{n}+$ Y_{n} respectively $X_{1}-Y_{1}, \ldots, X_{n}-Y_{n}$.

Solution:

We have

$$
\begin{align*}
S_{X+Y}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}+Y_{i}-\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}+Y_{i}\right)\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n-1}\left(\left[X_{i}-\bar{X}\right]+\left[Y_{i}-\bar{Y}\right]\right)^{2} \tag{1}\\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\left[X_{i}-\bar{X}\right]^{2}+2\left[X_{i}-\bar{X}\right]\left[Y_{i}-\bar{Y}\right]+\left[Y_{i}-\bar{Y}\right]^{2}\right) \\
& =S_{X}^{2}+S_{Y}^{2}+2 S_{X Y} \tag{1}
\end{align*}
$$

and analogously

$$
\begin{align*}
S_{X+Y}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-Y_{i}-\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)\right)^{2} \\
& =\frac{1}{n-1} \sum_{i=1}^{n-1}\left(\left[X_{i}-\bar{X}\right]-\left[Y_{i}-\bar{Y}\right]\right)^{2} \tag{1}\\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\left[X_{i}-\bar{X}\right]^{2}-2\left[X_{i}-\bar{X}\right]\left[Y_{i}-\bar{Y}\right]+\left[Y_{i}-\bar{Y}\right]^{2}\right) \\
& =S_{X}^{2}+S_{Y}^{2}-2 S_{X Y} \tag{1}
\end{align*}
$$

so that

$$
\begin{equation*}
\frac{S_{X+Y}^{2}-S_{X-Y}^{2}}{4 S_{X} S_{Y}}=\frac{S_{X}^{2}+S_{Y}^{2}+2 S_{X Y}-\left(S_{X}^{2}+S_{Y}^{2}-2 S_{X Y}\right)}{4 S_{X} S_{Y}}=\frac{4 S_{X, Y}}{4 S_{X} S_{Y}}=r_{X Y} \tag{1}
\end{equation*}
$$

Task $5(3+2)$ The following R-function computes a test based on two datavectors x and y of equal length.

```
f <- function(x,y,alpha) {
    A <- length(x)
    B <- cor(x,y)*sd(y)/sd(x)
    C <- mean(y)-B*mean(x)
    D <- y-x*B-C
    E <- sum(D^2)/(A-2)
    F <- matrix(c(rep(1,A),x),ncol=2)
    F <- t(F)%*%F
    G <- solve(F)[2,2]
    H <- B/sqrt(G*E)
    I <- qt(1-alpha,A-2)
    J <- as.numeric(H>I)
    return(J)
}
```

a) Which values are defined by B, C and I ? Solution:

- B: estimated slope of simple linear regression $\hat{\beta}$
- C: estimated intercept of simple linear regression $\hat{\alpha}$
- I: $1-\alpha$ quantile of a t-distribution with A-2 degrees of freedom (1)
b) Which null-hypothesis is tested by the R-function?
- Which null-hypothesis is tested by the R-function?

Solution:

We test whether the slope of a simple linear regression is:

$$
\begin{equation*}
H_{0}: \beta \leq 0 \quad \text { vs. } H_{1}: \beta>0 . \tag{1}
\end{equation*}
$$

Task $6(2+4+3)$ Consider the model

$$
Y_{i}=\beta_{0}+x_{i 1} \beta_{1}+\ldots+x_{i k} \beta_{k}+\epsilon_{i} \text { for } i=1, \ldots, n
$$

where $\epsilon_{1}, \ldots, \epsilon_{n}$ are iid with $\epsilon_{1} \sim N\left(0, \sigma^{2}\right)$ for some $\sigma>0$ and $\operatorname{det}\left(X^{\prime} X\right) \neq 0$ where

$$
X=\left(\begin{array}{cccc}
1 & x_{11} & \ldots & x_{1 k} \\
\vdots & \vdots & & \vdots \\
1 & x_{n 1} & \ldots & x_{n k}
\end{array}\right)
$$

We want to predict the value of the dependent random variable Y for a combination of independent explanatory variables $z:=\left(1, x_{1}, \ldots, x_{k}\right)$. A possible predictor is $\hat{Y}:=z \hat{\beta}$ where $\hat{\beta}$ is the maximum likelihood estimator of $\beta=\left(\beta_{0}, \ldots, \beta_{k}\right)^{\prime}$.
a) Derive the distribution of \hat{Y}. Solution:

By Theorem 8.17 we have $\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)$
and by Theorem 8.7 with $A=z$ and $b=0$

$$
\begin{equation*}
z \hat{\beta} \sim N\left(z \beta, \sigma^{2} z\left(X^{\prime} X\right)^{-1} z^{\prime}\right) \tag{1}
\end{equation*}
$$

b) Show that

$$
\frac{\hat{Y}-z \beta}{\sqrt{z\left(X^{\prime} X\right)^{-1} z^{\prime} \hat{\sigma}^{2} \frac{n}{n-k-1}}} \sim t_{n-k-1}
$$

where $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\left(1, x_{i 1}, \ldots, x_{i k}\right) \hat{\beta}\right)^{2}$.

Solution:

By Theorem 8.20 we know that $\hat{\beta}$ and $\hat{\sigma}^{2}$ are independent.
By a) we know that $\frac{z \hat{\beta}-z \beta}{\sqrt{\sigma^{2} z\left(X^{\prime} X\right)^{-1} z^{\prime}}} \sim N(0,1)$
and by Theorem $8.19 \frac{\hat{\sigma}^{2}}{\sigma^{2}} \frac{n}{n-k-1} \sim \chi_{n-k-1}^{2}$.
It follows that

$$
\begin{equation*}
\frac{\hat{Y}-z \beta}{\sqrt{z\left(X^{\prime} X\right) z^{\prime} \hat{\sigma}^{2} \frac{n}{n-k-1}}}=\frac{\frac{\hat{Y}-z \beta}{\sqrt{z\left(X^{\prime} X\right)^{-1} z^{\prime} \sigma^{2}}}}{\sqrt{\frac{\hat{\sigma}^{2} \frac{n}{n-k-1}}{\sigma^{2}}}} \tag{1}
\end{equation*}
$$

is t distributed with $n-k-1$ degrees of freedom.
c) Derive a one-sided $(1-\alpha)$ confidence interval of the form (d, ∞) for $z \beta$. Try to find a small interval (you will get no points for the trivial interval $(-\infty, \infty)$).

Solution:

We have

$$
\begin{align*}
1-\alpha & =P\left(\frac{\hat{Y}-z \beta}{\sqrt{z\left(X^{\prime} X\right)^{-1} z^{\prime} \sigma^{2} \frac{n}{n-k-1}}} \leq F_{t_{n-k-1}}^{-1}(1-\alpha)\right) \tag{1}\\
& =P\left(\hat{Y}-z \beta \leq F_{t_{n-k-1}}^{-1}(1-\alpha) \sqrt{z\left(X^{\prime} X\right)^{-1} z^{\prime} \hat{\sigma}^{2} \frac{n}{n-k-1}}\right) \\
& =P\left(\hat{Y}-F_{t_{n-k-1}}^{-1}(1-\alpha) \sqrt{z\left(X^{\prime} X\right)^{-1} z^{\prime} \hat{\sigma}^{2} \frac{n}{n-k-1}} \leq z \beta\right) \tag{1}
\end{align*}
$$

and thus

$$
\begin{equation*}
\left(\hat{Y}-F_{t_{n-k-1}}^{-1}(1-\alpha) \sqrt{z\left(X^{\prime} X\right)^{-1} z^{\prime} \hat{\sigma}^{2} \frac{n}{n-k-1}}, \infty\right) \tag{1}
\end{equation*}
$$

is a $1-\alpha$ confidence interval for $z \beta$.

