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Remarks:

� The exam consists of 5 tasks.

� You have 180 minutes to complete the exam.

� You can only use the provided short version of our lecture notes.

� The solution must be documented well with calculations and if necessary

references to theorems of our lecture. Giving just the solution is not

sufficient.

� Whenever you need a certain quantile or probability try to express it

using quantiles respectively the distribution function of standard distri-

butions, like standard normal, t or F distribution.
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Task 1 (7 + 6 + 2 + 5 + 2) Let X1, . . . , Xn be independent and identically

Poisson distributed with probability mass function (discrete density) fθ, θ ≥ 0

given by

fθ(x) =
θx

x!
e−θI{x∈N0}.

a) Compute the maximum likelihood estimator of θ.

Hint: Consider first the case where not all random variables attain the

value 0: {ω ∈ Ω :
∑n

i=1Xi(ω) > 0}. Treat then the special case: {ω ∈
Ω :

∑n
i=1 Xi(ω) = 0}.

Solution:

Since X1, . . . , Xn are independent we have:

LX1,...,Xn(θ) =
n∏
i=1

θXi

Xi!
e−θI{Xi∈N0} 1

= e−nθ
θ
∑n
i=1Xi∏n

i=1Xi!
I{X1,...,Xn∈N} 1

and thus

log(LX1,...,Xn(θ)) = −nθ +
n∑
i=1

Xi log(θ)−
n∑
i=1

log(Xi!) + log(I{X1,...,Xn∈N}). 1

For maximization we calculate the first derivative

∂LX1,...,Xn(θ)

∂θ
= −n+

∑n
i=1Xi

θ
!

= 0

⇔ θ =
1

n

n∑
i=1

Xi = X. 1

The second derivative equals:

∂2LX1,...,Xn(θ)

∂2θ
= −

∑n
i=1Xi

θ2

which is negative if
∑n

i=1Xi > 0 and thus a maximum. 1

If
∑n

i=1 Xi = 0 we have

L0,...,0(θ) =
n∏
i=1

θ0

0!
e−θ = e−θn 1

which is maximal for θ = 0 since e−θn is strictly monotonic decreasing. 1

Thus

θ̂ML =

X if
∑n

i=1Xi > 0

0 if
∑n

i=1Xi = 0
= X.
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b) Show that 1
n

∑n
i=1Xi is uniformly minimum variance unbiased estimator

for θ.

Hint: You can use here and in the following tasks that {
∏n

i=1 fθ(xi), θ ≥
0} is regular and that for a Poisson distributed random variable X : E(X) =

θ and E(X2) = θ + θ2.

Solution:

We have

Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi) =
θ

n
. 1

For the Cramer-Rao bound we compute iθ :

iθ = Var

∂ log
(
θX

X!
e−θI{X∈N0}

)
∂θ

 1

= Var

{
∂
[
X log(θ)− log(X!)− θ + log(I{X∈N0})

]
∂θ

}

= Var

(
X

θ
− 1

)
=

1

θ2
Var(X)

=
1

θ2
(E(X2)− E(X)2)

=
1

θ2
(θ2 + θ − θ2) =

1

θ
1

and thus the Cramer Rao bound equals

1

niθ
=
θ

n
1

so that 1
n

∑
−i = 1nXi reaches the Cramer-Rao bound 1

and is unbiased because of E(X = E(X1) = θ. 1

Thus θ̂ is UMVU estimator for θ.

c) Construct an asymptotic two sided confidence interval of confidence level

1 − α for θ. You can assume that all conditions for Theorem 6.6 are

fulfilled. You will not get points for the trivial interval (−∞,∞).

Solution:

By Remark 6.7 we haveX − Φ−1
(

1− α

2

) îθ− 1
2

√
n
,X + Φ−1

(
1− α

2

) îθ− 1
2

√
n

 1

where we can choose îθ
− 1

2 = i
− 1

2

θ̂
=
(

1
X

)− 1
2 =
√
X 1

where the second last equation follows from the calculations in b).
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d) We use the gamma distribution with parameters α, β > 0 as prior:

fθ(θ) =
βα

Γ(α)
θα−1e−βθ · I{θ≥0}.

Compute the Bayes estimator of θ.

Hint: Let Y be a gamma distributed random variable with parameters

α, β > 0, then E(Y ) = α
β

.

Solution:

By 3.20 we have

θ̂B =

∫
θpθ|X=x(θ)dθ 1

where by Remark 3.19 and calculations in a)

pθ|X=x(θ) =
pX|θ=θ(x)pθ(θ)

pX(x)

=
e−nθ θ

∑n
i=1Xi∏n
i=1Xi!

I{X1,...,Xn∈N0}
βα

Γ(α)
θα−1e−βθIθ≥0

pX1,...,Xn(x1, . . . , xn)

= C(x1, . . . , xn)θα−1+
∑n
i=1Xie−(n+β)n. 1

Thus θ|X = x is gamma distributed 1

with parameters α̃ = α +
∑n

i=1Xi and β̃ = n+ β. 1

Applying the hint then yields

E(θ|X = x) =
α +

∑n
i=1Xi

n+ β
= θ̂B 1

e) How should one choose α and β to add as few prior information as

possible?

Solution: If we compare the Bayes estimator with the ML estimator,

we see that α and β represent pseudo-observations. More in detail α is

the sum of β pseudo-observations. 1

Choosing α, β as close to 0 as possible adds therefore as few as possible

prior information. 1

Alternatively one can see that the density of a gamma distributed random

variable gets flat (does not depend on θ) if β → 0 and α→ 1. β = 0 and

α = 1 as β = α = 0 yield to so called improper prior distribution.

Task 2 LetX1, . . . , Xn be independent and identically distributed with density

fθ(x) :=

θ − θ2 · |x| |x| ≤ 1
θ

0 |x| > 1
θ
.
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Compute a moment estimator for θ.

Solution: Since the density is symmetric E(X) = 0 does not give us informa-

tion about θ, we have to look at the second moment. 1

By symmetry we have

E(X2) =

∫ 1
θ

− 1
θ

x2(θ − θ2|x|)dx 1

= 2

∫ 1
θ

0

(x2θ − θ2x3)dx

= 2

[
1

3
x3θ − θ2 1

4
x4

] 1
θ

x=0

=
2

3θ3
θ − 1

2θ4
θ2 =

1

6θ2
1

which we solve for θ :

E(X2)θ2 =
1

6
⇔ θ2 =

1

6E(X2)
⇔ θ =

(
1

6E(X2)

) 1
2

. 1

It follows that θ̂ =
(

1
6 1
n

∑n
i=1X

2
i

) 1
2

is a moment estimator for θ 1

(there are a lot more possible).

Task 3 (3 + 4) Let X1, . . . , Xn be independent and identically distributed

with density

fθ(x) = θe−θxI{x≥0}

for θ > 0

a) Show that {gθ(x1, . . . , xn), θ > 0} where gθ denotes the joint density of

x1, . . . , xn has a monotone likelihood ratio in V (X1, . . . , Xn) = −
∑n

i=1Xi.

Solution:

We show that {gθ(x1, . . . , xn), θ > 0} is an exponential family and then apply

Lemma 7.32. Because of independence the joint density equals

gθ(x1, . . . , xn) =
n∏
i=1

[
θe−θxiI{xi≥0}

]
1

= θn︸︷︷︸
c(θ)

exp

 θ︸︷︷︸
Q(θ)

[
−

n∑
i=1

xi

]
︸ ︷︷ ︸
V (X1,...,Xn)

 I{x1,...,xn≥0}︸ ︷︷ ︸
h(x1,...,xn)

1

and since Q(θ) = θ is strictly increasing {gθ(x1, . . . , xn), θ > 0} has a mono-

tone likelihood ration in −
∑n

i=1Xi. 1
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b) Construct the uniformly most powerful level α test for H0 : θ ≤ θ0 vs.

H1 : θ > θ0.

Hint: For X1, . . . , Xn independent and identically exponentially distribute with

paramater λ is
∑n

i=1 Xi Erlang distributed with parameters n, λ and density

hn,λ(x) = λnxn−1e−λx

(n−1)!
I{x≥0}.

Solution:

By the Karlin-Rubin (Theorem 7.29) and a) 1

the most powerful level α test for H0 : θ ≤ θ0 vs H1 : θ > θ0 is of the form

ψα(X1, . . . , Xn) =


1

γα

0

if −
∑n

i=1Xi

>

=

<

cα. 1

or equivalently

ψα(X1, . . . , Xn) =


1

γα

0

if
∑n

i=1Xi

<

=

>

c̃α.

. By the hint
∑n

i=1Xi is Erlang distributed with parameters n, θ. Since the

distribution is continuous,we can choose γα = 0. 1

Thus it remains to calculate cα. We need Pθ0(
∑n

i=1Xi < c̃α) = α thus

c̃α = F−1
n,θ0

(α) where F−1
n,θ0

(α) denotes the α quantile of the Erlang distribu-

tion with parameters n, θ0. 1

Task 4 (3 + 2) The following R-function creates a plot based on a n-

dimensional data vector y and a n× k matrix x.

f <- function(x,y) {

A <- length(y)

B <- length(x[1,])

C <- cbind(1,x)

D <- solve(t(C)%*%C)%*%t(C)%*%y

E <- y-C%*%D

F <- numeric(A)

for (i in 1:A) {

F[i] <- t(C[i,])%*%solve(t(C)%*%C)%*%C[i,]

}

plot(F,E)

}
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a) Which values are defined by D, E and F?

Solution:

– D: vector of estimated regression coefficients β̂ 1

– E: vector of estimated residuals ε̂ 1

– F: vector of leverages h 1

b) What can one deduce from such a plot?

The scatterplot of residuals and leverages shows if there are influential

observation within the linear regression. 1

Observations with large leverage and large absolute (estimated) residual

(this observations would be in the top right or top bottom corner of the

plot) influence the estimated regression coefficients strongly. 1

Task 5 (4 + 4) Consider the model

Yi = β0 + xi1β1 + . . .+ xikβk + εi for i = 1, . . . , n,

where ε1, . . . , εn are iid with ε1 ∼ N(0, σ2) for some σ > 0 and det(X ′X) 6= 0

where

X =

1 x11 . . . x1k

...
...

...

1 xn1 . . . xnk


a) Show that

∑n
i=1 ε̂i = 0 where ε̂i for i = 1, . . . , n denote the estimated residu-

als based on a maximum likelihood estimator of β (situation of Theorem 8.16).

Hint: Remember that β̂ is minimizer of f(β) :=
∑n

i=1(Yi −Xβ)2.

Solution:

This follows from the so called normal equations which are necessary to derive

the maximum likelihood estimator of θ. The likelihood equals

LY1,...,Yn(β, σ2) =
n∏
i=1

(
1√
2π
e−

1
2σ2

(Yi−β0−Xi1β1−...−Xikβk)2
)

= (2π)−
n
2 exp(− 1

2σ2

n∑
i=1

[Yi − β0 −Xi1β1 − . . .−Xikβk]
2).

Since we want to maximize the likelihood we have to minimize
∑n

i=1[Yi−β0−
Xi1β1 − . . . −Xikβk]

2 with respect to β. That is what the hint says. So these
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steps are not necessary. The derivative with respect to β0 1

equals

∂
∑n

i=1[Yi − β0 −Xi1β1 − . . .−Xikβk]
2

∂β0

=
n∑
i=1

[Yi − β0 −Xi1β1 − . . .−Xikβk](−1)
!

= 0 1

Using the hint we know that β̂ is minimizer and thus solves the above

equation, 1

so that:

0 =
n∑
i=1

[Yi − β̂0 −Xi1β̂1 − . . .−Xikβ̂k](−1) =
n∑
i=1

ε̂i. 1

b) Denote by F−1
m (α) the α quantile of a chi-square distributed random variable

with m degrees of freedom and by σ̂2 the maximum likelihood estimator of σ2

as defined in Theorem 8.16. Show that(√
nσ̂2

F−1
n−k−1(1− α/2)

,

√
nσ̂2

F−1
n−k−1(α/2)

)

a 1− α confidence interval for σ is.

Solution:

By 8.19 we have that n σ̂
2

σ2 is chisquare distributed with n − k − 1 degrees of

freedom 1

and thus:

1− α = P

(
F−1
n−k−1(α/2) < n

σ̂2

σ2
< F−1

n−k−1(1− α/2)

)
1

= P

(
F−1
n−k−1(α/2)

nσ̂2
<

1

σ2
<
F−1
n−k−1(1− α/2)

nσ̂2

)

= P

√F−1
n−k−1(α/2)

nσ̂2
<

1

σ
<

√
F−1
n−k−1(1− α/2)

nσ̂2

 1

= P

 1√
F−1
n−k−1(α/2)

nσ̂2

> σ >
1√

F−1
n−k−1(1−α/2)

nσ̂2


= P

(√
nσ̂2

F−1
n−k−1(α/2)

> σ >

√
nσ̂2

F−1
n−k−1(1− α/2)

)
1
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