Markov Chains and Applications

Teacher: L. Avena
Written examination: Monday 30 January 2023, 9:00-12:00.

- Write your name and student identification number on each piece of paper you hand in.
- All answers must come with a full explanation. Formulas alone are not enough. Formulate your answers clearly and carefully.
- Open book exam: lecture notes, textbooks and handwritten notes can be consulted.
- To each question is associated a score written in boldface, e.g. 3 points are associated to question (1a). Total score: 100.

Exercise 1

Fix $M \in \mathbb{N}$ and $\epsilon \in(0,1 / 2)$, and let $\left(X_{n}\right)_{n \geq 1}$ be the Markov chain with state space $S:=\{0,1,2, \ldots, M-1, M\}$ and the following tranisition matrix P :

$$
\begin{gathered}
P(0,0)=\epsilon, \quad P(0, i)=\frac{1-\epsilon}{M}, \text { for all } i \in S \backslash\{0\}, \\
\text { and } P(i, j)=\frac{1}{M}, \text { for any } i, j \in S \backslash\{0\}
\end{gathered}
$$

(1a) [$\mathbf{3} \mathbf{~ p t s}]$ Is this chain irreducible?
(1b) [3 pts] For any $i \in S$, show that $\lim _{n \rightarrow \infty} P^{n}(i, 0)=0$.
(1c) [6 pts] For any $i \in S$ and $j \in S \backslash\{0\}$, show that $\lim _{n \rightarrow \infty} P^{n}(i, j)=\frac{1}{M}$. (HINT: you may want to use Chapman-Kolmogorov equations.)
(1d) [3 pts] Determine all the probability measures on S that are invariant for P.

Exercise 2

Fix $L \in \mathbb{N}$ and let $\left(X_{n}\right)_{n \geq 1}$ be the Markov chain with state space $S:=$ $\{0,1,2, \ldots, L-1, L\}$ and tranisition matrix P defined as follows:

$$
P(0,0)=P(0,1)=\frac{1}{2}, \quad P(L, L)=1
$$

and $P(i, i+1)=P(i, i-1)=\frac{1}{2}$, for all $1 \leq i \leq L-1$.
(2a) [7 pts] Define τ_{L} to be the first time that the chain is in state L and argue that for all $i \in S$:

$$
P\left(\tau_{L} \leq n \mid X_{0}=i\right) \geq P(\sigma \leq n / L)
$$

where σ is a random variable with values in \mathbb{N} and Geometric distribution of parameter 2^{-L}, that is :

$$
P(\sigma=n)=\left(1-2^{-L}\right)^{n-1} 2^{-L}, \quad \forall n \in \mathbb{N}
$$

(2b) [7 pts] Show that for any $i \in S, \lim _{n \rightarrow \infty} P^{n}(i, L)=1$.
(2c) [3 pts] Determine all the probability measures on S that are invariant for P.

Exercise 3

Let P be the transition matrix of an irreducible and aperiodic Markov chain on a finite state space S.
(3a)[3 pts] Consider a stochastic process $\left(Z_{n}\right)_{n \geq 1}$ with values in $S \times S$ defined as follows. For any $n \geq 1, Z_{n}:=\left(X_{n}^{(1)}, X_{n}^{(2)}\right)$, where $\left(X_{n}^{(1)}\right)_{n \geq 1},\left(X_{n}^{(2)}\right)_{n \geq 1}$ are two independent copies of the Markov chain with transition matrix \bar{P}. Show that $\left(Z_{n}\right)_{n \geq 1}$ is also a Markov chain and write down the entries of its transition matrix.
(3b)[10 pts] For a given $s \in S$, set $\tau:=\min \left\{n \geq 0: Z_{n}=(s, s)\right\}$ to be the first time Z_{n} is in state (s, s), and assume that $P\left(\tau<\infty \mid Z_{0}=(i, j)\right)=1$, for any $i, j \in S$. Show (without invoking any known Theorem about Markov chains) that

$$
\lim _{n \rightarrow \infty}\left|P^{n}(i, l)-P^{n}(j, l)\right|=0, \quad \text { for any } i, j, l \in S
$$

(3c)[5 pts] Consider a probability measure π on S which is invariant for P. Show (without invoking any known Theorem about Markov chains) that

$$
\lim _{n \rightarrow \infty} P^{n}(i, j)=\pi(j) \quad \text { for any } i, j \in S
$$

Exercise 4

(4a) [15 pts] Let $G=(V, E)$ be an arbitrary undirected connected graph with $n=|V|$ vertices and let $f: V \rightarrow \mathbb{R}$ be a real valued function defined on the set of vertices of the graph.

Define an appropriate Markov chain on S and describe in details a related Monte Carlo algorithm to find a vertex for which f is maximal or approximately so.

Exercise 5

Let $Q=\left(q_{i, j}\right)_{i, j \in S}$ be the infinitesimal generator of a continuous-time Markov chain $\left(X_{t}\right)_{t \geq 0}$ on a finite state space S.
(5a) [6 pts] Define a transition matrix P of a discrete time Markov chain on S and an algorithm based on P to sample a trajectory of $\left(X_{t}\right)_{t \geq 0}$ in a given time interval $[0, T]$, for $T>0$ fixed.
(5b)
[9 pts] Assume that Q is such that $q_{i, i} \neq q_{j, j}$ for some $i \neq j \in S$. As in the previous question, define a transition matrix P^{\prime} (but P^{\prime} must be different from the matrix P in your previous answer) of a discrete time Markov chain on S and an algorithm based on P^{\prime} to sample a trajectory of $\left(X_{t}\right)_{t \geq 0}$ in a given time interval $[0, T]$, for $T>0$ fixed.
(5c) [2 pts] Which of the two algorithms you described in the previous answers is more convenient in practice? Motivate your answer.

Exercise 6

Consider the subshift of finite type with $S=\{0,1,2\}$ and

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(6a) [5 pts] Show that this subshift of finite type is irreducible.
(6b) [5 pts] Prove that $h\left(X_{A}\right)=\log \lambda$, where λ is the largest root of the polynomial $P(x)=x^{3}-x^{2}-1$.
(6c) [8 pts] Show that $(1 / \lambda, \lambda, 1)$ is a left eigenvector of A with eigenvalue λ and compute the Parry measure in terms of λ.

