1. **(14 points)** Given is a function $u : \mathbb{R}^2 \to \mathbb{R}$ with

$$u(x, y) = xy - 2x^3 + 6xy^2.\)**

(a) Show that u is harmonic.

(b) Find a function $v : \mathbb{R}^2 \to \mathbb{R}$ such that the complex function

$$f(x + iy) = u(x, y) + iv(x, y)$$

is holomorphic. Is v unique? Motivate your answer.

(c) The function f from (b) is given as a function of x and y. Write it as a function of $z = x + iy$.

2. **(20 points)** Let $U = \mathbb{C} \setminus \{x \in \mathbb{R} : x \leq 0\}$ be the complex plane slit along the negative real axis and let $\text{Log} : U \to \mathbb{C}$ be the principal branch of the complex logarithm. Consider the analytic function $h : U \to \mathbb{C}$ given by

$$h(z) = \text{Log}(z) - 4(z - 2)^2.$$

(a) Show that h has precisely two zeros (counted with multiplicity) on $U_1(2) = \{z \in \mathbb{C} : |z - 2| < 1\}$.

(b) Show that h has two different zeros on $U_1(2)$.

3. **(22 points)** Consider the function $f : \mathbb{C} \setminus \{\pm 1\} \to \mathbb{C}$ given by

$$f(z) = \frac{3z - 1}{z^2 - 1}.$$

(a) Determine the radius of convergence of f around $-4 - 4i$.

(b) Determine the Laurent series of f on the open annulus

$$\{z \in \mathbb{C} \mid 1 < |z + 2| < 3\}.$$
4. (30 points) Consider the function

\[f(z) = \frac{z^3}{1 + z^4} \exp(-iz) \]

on its natural domain of definition in the complex plane.

(a) Determine all singularities of \(f \) and their type, that is, distinguish between removable singularities, poles or essential singularities. For poles, also specify their order.

(b) Compute for all singularities of \(f \) in the lower half plane their residues and show that their sum is

\[\frac{1}{2} \exp\left(-\frac{1}{2} \sqrt{2}\right) \cos\left(\frac{1}{2} \sqrt{2}\right). \]

(c) Determine the value of the complex line integral

\[\oint_{\gamma} f(z) \, dz, \]

where the curve \(\gamma \) is given below.

(d) Determine the value of the real definite integral

\[\int_{0}^{\infty} \frac{x^3}{1 + x^4} \sin(-x) \, dx. \]

(Hint: You may use that \(\lim_{R \to \infty} \int_{0}^{\pi} \exp(-R \sin(t)) \, dt = 0. \))

5. (14 points)

(a) Give a precise explanation why there cannot be an analytic function \(f : \mathbb{C} \to \mathbb{C} \) such that

\[f(1/n) = \frac{1}{1 + (1/n^2)} \]

for all \(n \in \mathbb{N} \).

(b) Assume that for an analytic function \(g : \mathbb{C} \to \mathbb{C} \) it holds true that \(\text{Re}(g(z)) \leq 2016 \) for all \(z \in \mathbb{C} \). Show that \(g \) must be constant.

Note: Part (a) and (b) can be solved independently of each other.